The crystal structure of $PbLu_3Nb_6Cl_{15}O_6$, a new oxychloride based on discrete $Nb_6Cl_{12}O_6$ units

Fakhili Gulo,† Thierry Roisnel and Christiane Perrin*

Laboratoire de Chimie du Solide et Inorganique Moléculaire, UMR 6511 CNRS-Université de Rennes1, Institut de Chimie de Rennes, Avenue du Général Leclerc, 35042 Rennes Cedex, France. E-mail: christiane.perrin@univ-rennes1.fr

Received 25th October 2000, Accepted 2nd February 2001 First published as an Advance Article on the web 6th March 2001

A new Nb₆ oxychloride, PbLu₃Nb₆Cl₁₅O₆, has been synthesized from stoichiometric amounts of PbO, Lu₂O₃, Nb₂O₅, NbCl₅ and Nb, heated at 680 °C. The crystal structure has been determined by single crystal X-ray diffraction (cubic, $Pn\bar{3}$, a=13.8327(4) Å, V=2646.8(1) Å³, Z=4). The structure consists of a f.c.c. stacking of discrete edge-capped Nb₆Clⁱ₆Oⁱ₆Cl^a₆ units in which six oxygen and six chlorine atoms are ordered on the twelve inner positions, while the six apical ones are occupied by six chlorines. Additional chlorines, which do not belong to the former units, are bonded to the lutetium atoms to form Lu₂Cl₂ entities that occupy 3/4 of the tetrahedral cavities of the stacking units, while the lead ions are randomly distributed in the 1/4 remaining tetrahedral and in the octahedral cavities. The Nb₆Cl₁₂O₆ units are connected to each other by both the Lu₂Cl₂ entities and the lead ions to form a three-dimensional framework. This compound exhibits 14 valence electrons per cluster.

Introduction

For several decades, transition metal cluster chemistry has attracted the attention of many groups in the world not only because of the fascinating basic aspects of such nanoparticles of high symmetry, perfectly self-organized in the solid state, but also owing to their potential applications. Indeed, many of these compounds are now well known in the materials community for their remarkable physical properties like superconductivity at high critical magnetic fields in $M_x Mo_6 S_8$ Chevrel phases¹ or dielectric relaxations,² as well as for their applications in various areas like catalysis³ or redox intercalation–deintercalation processes,⁴ and their use as precursors for reactions in solution chemistry.⁵

The chemistry of Nb₆ cluster halides and oxides is now well documented and a large number of binary, ternary and quaternary compounds based on the Nb₆ $L_{12}^{i}L_{6}^{a}$ (L = Cl, Br or \dot{O}) units have been reported.^{6–8} In these units, the Nb₆ cluster is edge-capped by twelve inner ligands (L¹), while six additional apical ligands (L^a) are located on terminal positions. Each of these two classes of materials, in which discrete or interconnected units are encountered, possesses its own electronic and structural features in relation to the nature of the ligands bonded to the Nb₆ cluster. In fact, the replacement of halogen by oxygen that is 2^- charged, smaller and more electronegative leads for the oxides to changes in the VEC (Valence Electron Count) per Nb₆ cluster, the interunit connection and the charge of the units. The ideal electron count per cluster decreases from 16 or 15 for the Nb₆ halides⁹ to 14 for the Nb₆ oxides.¹⁰ Moreover, the connection between the units involving mainly apical ligands in the halides⁷ is most frequently built up by inner ligands in the oxides, a feature allowed by the small size of oxygen.^{11,12} These two different types of interunit connections lead to large intercluster distances in the halides, while the

†Permanent address: FKIP Universitas Sriwijaya, Kampus-Inderalaya, Palembang, Indonesia

clusters are close to each other in the oxides for which band structures are usually encountered.^{8,10}

Between these two classes of Nb₆ halides and oxides, it was interesting to explore the synthesis of new Nb₆ oxyhalides with various halogen/oxygen arrangements around the cluster, in order to favour anisotropic interconnection between the units and thus the specific properties that are related to it. For this purpose we have started the investigation of these new compounds, which begin now to form an important class of intermediate materials. Indeed, after the discovery of the three first series of Nb₆ oxychlorides, A₂RENb₆Cl₁₇O,¹³ three lifst series of Nb₆ oxychordes, A₂RENb₆Cl₁₇O, A₂RENb₆Cl₁₅O₃,¹⁴ and RENb₆Cl₁₃O₃ (A=monovalent cation, RE = rare earth),¹⁵ other examples like Ti₂Nb₆Cl₁₄O₄,¹⁶ and more recently [Tl₅(Ti₂Cl₉)][(Nb₆Cl₁₂O₄)₃(Ti₃Cl₄)₂],¹⁷ Cs₂Ti₃(Nb₆Cl_{12.5}O₄)₂Cl₂,¹⁸ and CsNb₆Cl₁₂O₂,¹⁹ have been isolated. In these compounds, the Nb₆L₁₈ units exhibit one, two, three or four oxygen ligands on inner positions, while the apical ones are always occupied by halogens with the exception of CsNb₆Cl₁₂O₂ that exhibits two inner and two apical oxygens shared between adjacent units. Up to now, the number of oxygen ligands bonded to the $Nb_{6}\xspace$ cluster is low, and from a structural point of view the Nb₆ oxyhalides remain similar to the halides. We began to increase the number of oxygen ligands around the Nb₆ cluster in order to approach the electronic and structural features of Nb₆ oxides.

In this paper, we present the crystal structure of the first Nb₆ oxychloride exhibiting six oxygens on the inner positions, PbLu₃Nb₆Cl₁₅O₆. It crystallizes in an original structure type based on discrete Nb₆Cl₁₂O₆ units. Additional chlorines form Lu₂Cl₂ entities that bridge the clusters to build the three-dimensional network.

Experimental

Synthesis

 $PbLu_3Nb_6Cl_{15}O_6$ was prepared from stoichiometric mixtures of PbO (Prolabo, purity 99.5%), Lu_2O_3 (Rhône Poulenc),

J. Mater. Chem., 2001, 11, 1237-1241

1237

DOI: 10.1039/b008609f

This journal is (C) The Royal Society of Chemistry 2001

JOURNAL OF

Table 1 Crystal data and structure refinement for Pb	Lu ₃ Nb ₆ Cl ₁₅ O ₆
--	---

Chemical formula	PbLu ₃ Nb ₆ Cl ₁₅ O ₆
Formula weight/g mol^{-1}	1917.31
Temperature of data collection/K	295
Wavelength/Å	0.71073
Crystal size/mm ³	$0.05 \times 0.05 \times 0.05$
Crystal system	Cubic
Space group	<i>Pn</i> 3 (No. 201)
Unit cell dimensions: a/Å	13.8327(4)
Volume/Å ³	2646.80(13)
Ζ	4
Absorption coefficient, μ/mm^{-1}	21.436
θ range for data collection/°	2.55 to 27.08
Integrated reflections	25958
Independent reflections used	980
in the refinement	
Refined parameters	56
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0316, wR_2 = 0.0699$
Goodness-of-fit on F	1.097
Largest diff. peak and hole/e $Å^{-3}$	1.881 and -1.316

Nb₂O₅ (Merck, Optipur), NbCl₅ (Ventron, purity 99.998%) and Nb (Ventron, purity 99.8%), heated in an evacuated sealed silica tube at 680 °C. After one week of reaction the compound was obtained as a microcrystalline powder stable in ambient atmosphere. Some single crystals suitable for structural determination were obtained during the synthesis. They grew in the form of black truncated octahedra but a brown powder was obtained when they were ground. Energy-dispersive X-ray spectrometry (EDS) on the heavy elements indicated the presence of lead, lutetium, niobium and chlorine atoms in all the crystals analysed. The compound exhibited an X-ray powder pattern attributed to an original phase, and which corresponds to the theoretical one calculated after structural determination.

Crystal data collection and structural determination

PbLu₃Nb₆Cl₁₅O₆ single crystal data collection was carried out at room temperature with a Nonius KappaCCD diffractometer (Centre de Diffractométrie, Université de Rennes 1, France) with Mo K α radiation ($\lambda = 0.71073$ Å). A crystal-to-detector distance of 30 mm was used and data collection strategy was performed with the help of the COLLECT program²⁰ to measure all the Bragg reflections inside the full sphere until $\theta = 27.08^{\circ}$. A total of 183 frames were recorded using $\Delta \omega = 1.5^{\circ}$ rotation scans to fill the asymmetric unit cell (exposition time = 60 s deg^{-1}). Finally, 25958 reflections were indexed, Lorentz-polarization corrected and then integrated in the cubic symmetry (23 point group) by the DENZO program of the KappaCCD software package. Frames scaling and merging of the equivalent, redundant and Friedel reflections in the P23 point group were performed using the SCALEPACK program,²¹ leading to 1111 independent reflections with an internal agreement factor $R_{int} = 0.056$. No absorption corrections were applied.

The structure was solved using direct methods,²² in the $Pn\bar{3}$

centrosymmetric space group that is in good agreement with the observed conditions limiting the possible reflections. The refinement was carried out by full-matrix least squares methods and Fourier syntheses on $F^{2,23}$ All the atoms were refined with anisotropic displacement factors. All of them fully occupy their crystallographic sites, except for the lead atoms, which are randomly distributed on three crystallographic sites giving a stoichiometry of 0.96(1) Pb per formula unit. For the sake of clarity, in the following we round the formula to PbLu₃Nb₆₋ Cl₁₅O₆. The largest residual difference Fourier peak and hole are close to the lutetium atom position: 1.881 e Å $^{-3}$ at 0.06 Å and $-1.316 \text{ e} \text{ Å}^{-3}$ at 0.67 Å. Crystal data, experimental conditions for intensity data collection and structure refinement are given in Table 1. Atomic positions, site occupancy and isotropic equivalent displacement factors are reported in Table 2. Relevant interatomic distances and angles are summarized in Table 3. Anisotropic thermal factors and observed and calculated structure factors are available from the authors upon request.

CCDC reference number 158628. See http://www.rsc.org/ suppdata/jm/b0/b008609f/ for crystallographic data in CIF or other electronic format.

Results

PbLu₃Nb₆Cl₁₅O₆ crystallizes in an original structure type built up from discrete Nb₆Clⁱ₆Oⁱ₆Cl^a₆ units arranged according to a face-centred cubic packing, in which lead and lutetium atoms occupy the octahedral and tetrahedral voids between the units (Fig. 1). This compound represents the first example of Nb₆ oxychloride in which the twelve inner ligands coordinated to the cluster consist of six oxygen and six chlorine atoms.

The unit represented in Fig. 2 is centred on a -3 inversion axis: six O and six Cl(3) are ordered on the twelve inner positions while the six apical ones are occupied by Cl(2). The six niobium atoms of the cluster are equivalent, located in a pyramidal site, the basis of which is formed by two *cis*-oxygen and two *cis*-chlorine atoms. The Nb₆ cluster is significantly distorted (*d*{Nb–Nb} = 2.7900(8) Å and 3.0173(9) Å for the Ocapped and Cl-capped Nb–Nb bonds respectively) due to the size effect of oxygen, as usually observed in other Nb₆ oxychlorides.²⁴ All the Nb–Nb, Nb–Cl and Nb–O distances are consistent with the ones previously found for other Nb₆ oxyhalides, in Cs₂UNb₆Cl₁₅O₃¹⁴ or ScNb₆Cl₁₃O₃,¹⁵ for example.

An extra chlorine, Cl(1), which does not belong to the Nb₆Cl₁₂O₆ unit, is found in the structure. Indeed, two Cl(1) atoms bridge two lutetium atoms with Lu–Cl(1)=2.718(1) Å, Lu–Cl(1)–Lu=108.01(8)° and Lu–Lu=4.3978(8) Å, to form a Lu₂Cl₂ entity that is characteristic of this compound (Fig. 3). These entities are centred on 1/4, 1/4, 3/4 positions and thus occupy 3/4 of the tetrahedral cavities arranged in the f.c.c. packing of Nb₆Cl₁₂O₆ units. These entities are relatively close to each other because the lutetium atom is located at 3.120(2) Å

Table 2	Atomic coordinates	and equivalent	isotropic displacemen	t parameters (Å ²)	for PbLu ₃ Nb ₆ Cl ₁₅ O ₆
---------	--------------------	----------------	-----------------------	--------------------------------	---

Atom	Wyckoff position	sof ^a	$ au^b$	x	У	Z	$U(eq)^c$
Lu	12g	1/2	1	0.5910(1)	$\frac{3}{4}$	1/4	0.019(1)
Nb	24h	1	1	0.5185(1)	0.6449(1)	0.4730(1)	0.014(1)
Cl(1)	12g	1/2	1	3 4	0.8655(2)	1/4	0.024(1)
Cl(2)	24h	1	1	0.5508(1)	0.8217(1)	0.4211(1)	0.022(1)
Cl(3)	24h	1	1	0.5039(1)	0.6996(1)	0.6441(1)	0.021(1)
0	24h	1	1	0.5437(3)	0.6227(3)	0.3329(3)	0.018(1)
Pb(1)	8e	0.1381(8)	0.4143	0.6353(1)	0.8647	0.6353	0.035(1)
Pb(2)	2a	0.0130(5)	0.1560	3 4	$\frac{3}{4}$	$\frac{3}{4}$	0.048(3)
Pb(3)	4b	0.0084(5)	0.0504	1/2	0	1/2	0.020(4)
^a sof=site	occupancy factor. ${}^{b}\tau = atom$	ic occupancy of the	e site. ^c U(eq) is d	efined as one third	of the trace of the	orthogonalized Uij	tensor.

Table 3 Selected interatomic distances (Å) and angles (°) for $PbLu_3Nb_6Cl_{15}O_6$

Nb ₆ cluster						
Nb–Nb	2.7900(8) 6×		Nb–Nb-	-Nb	65.4	7(2)
Nb–Nb	3.0173(9) 6 ×		Nb–Nb-	-Nb	57.2	7(1)
Nb–Nb	4.1096(10) 3×					
[Nb ₆ Cl ₆ O ₆]Cl ₆	unit					
Nb-O	1.990(4)		O-Nb-O	Cl(2)	81.14	4(13)
Nb–O	1.993(4)		O-Nb-O	Cl(2)	89.5	1(13)
Nb-Cl(3)	2.493(1)		Cl(2)–N	b-Cl(3)	83.14	4(5)
Nb-Cl(3)	2.541(1)		Cl(2)–N	b-Cl(3)	89.4	5(5)
Nb-Cl(2)	2.588(2)					
Lutetium envir	onment					
Lu–O	2.202(4) 2×		Cl(1)-Li	u-Cl(1)	71.99	9(8)
Lu–Cl(2)	2.626(1) 2×		Lu-Cl(1)–Lu	108.0	1(8)
Lu-Cl(1)	2.718(1) 2×		Lu-Cl(2)–Nb	85.90	6(5)
Lu-Cl(1)	3.120(2)		Lu-O-N	Nb	115.8((2)
Lu–Nb	3.5548(5)					
Lu–Lu	4.3978(8)					
Lead environm	ents $(<4.0 \text{ Å})^a$					
Pb1–Cl(3)	2.921(1) 3×		Pb(1)-P	b(2)	2.74	473(14)
Pb1–Cl(2)	3.240(2) 3×		Pb(1)-P	b(3)	3.24	425(14)
Pb1–Cl(3)	3.661(2) 3×					
Pb2–Cl(3)	3.771(2) 12×					
Pb3Cl(2)	$2.787(1) 6 \times$					
^a These values	correspond to	the	average	distances	between	empty
and full sites.						

from the Cl(1) atom of an adjacent entity. It means that a weak interaction may occur between them.

The clusters connect to each other *via* these Lu₂Cl₂ entities to form a three-dimensional network. Each cluster is surrounded by six Lu₂Cl₂ entities, each of them bridging four adjacent clusters *via* O and Cl(2) ligands with Lu–O=2.202(4) Å, Lu–Cl(2)=2.626(1) Å, and Lu–Nb=3.5548(5) Å. Finally, the coordination sphere of Lu³⁺ is formed by 2 Oⁱ, 2 Cl^a and 2 extra Cl atoms.

The three lead atoms, Pb(2), Pb(1) and Pb(3), are respectively randomly distributed in the 1/4 remaining tetrahedral cavities or shifted from the latter position, and in the octahedral cavities arranged by the packing of Nb₆Cl₁₂O₆ units. These three sites are partially occupied (Pb(1): 41.43%,

Fig. 1 Unit cell of $PbLu_3Nb_6Cl_{15}O_6$. For sake of clarity, Nb atoms, Lu_2Cl_2 entities and Pb atoms are only represented (one Pb per formula is statistically distributed over three crystallographic sites).

Fig. 2 (a) A view of the Nb₆Clⁱ₆Oⁱ₆Cl^a₆ unit with the atoms labeled, (b) projection of the unit along the threefold axis.

Fig. 3 The Lu_2Cl_2 entity with the coordination sphere of lutetium.

Pb(2): 15.60%, Pb(3): 5.04%) and coordinated by 9, 12 and 6 chlorines within 4 Å, respectively. No oxygen participates in these coordination spheres (Fig. 4). The Pb(1) site is separated by 2.746(1) Å from the Pb(2) site and by 3.243(1) Å from the Pb(3) site. These short distances, when compared to the Pb²⁺ radius, imply that the two neighbouring sites cannot be occupied simultaneously, in good agreement with the partial occupancies observed. The values of the isotropic equivalent displacement factors of these three lead atoms correlate to the sizes of their sites: the largest U_{eq} value corresponds to the largest Pb–Cl distances. However, these distances cannot be discussed rigorously, because they result from the average distances between empty and full sites and thus it is not possible to determine the actual local Pb–Cl distances.

Discussion

In PbLu₃Nb₆Cl₁₅O₆, the Lu₂Cl₂ entities formed by extra chlorines can be formally considered as complex cations. Then, the formula of the compound can be written as Pb(Lu₂Cl₂)_{1.5}[Nb₆Cl₁₂O₆] in which the unit exhibits the highest anionic charge (8⁻) observed up to now in the Nb₆ oxyhalides. Such extra chlorines have been also encountered in Ti₂Nb₆Cl₁₄O₄, ¹⁶ but in this case, they are bonded to titanium cations to form infinite –Cl–Ti–Cl–Ti– chains and not to give discrete polycations as in PbLu₃Nb₆Cl₁₅O₆. Other examples of extra halogens can be mentioned, for instance in [Na₂NbF₆-(Nb₆Cl₈F₇)],²⁵ where they form an octahedral NbF₆ entity, or in the zirconium cluster compounds like (A₄Br)Zr₆(Z)Br₁₈ (A = Na–Cs, Z = Be, B, H, Mn),²⁶ in which the extra Br is coordinated by four cations A to form [A₄Br]³⁺ complex cations connecting four nearest clusters.

The new PbLu₃Nb₆Cl₁₅O₆ exhibits the largest O/Cl ratio

Fig. 4 The lead environment for: (a) Pb(1), (b) Pb(2), (c) Pb(3), (d) the interconnection between the Pb sites.

around the Nb₆ cluster obtained up to now in the Nb₆ oxychlorides, all of these oxygens lying on inner positions. One oxygen (Cs₂LuNb₆Cl₁₇O),¹³ two oxygens (CsNb₆Cl₁₂O₂),¹⁹ three oxygens (Cs₂UNb₆Cl₁₅O₃),¹⁴ (ScNb₆Cl₁₃O₃),¹⁵ or four oxygens (Ti₂Nb₆Cl₁₄O₄)¹⁶ and [Tl₅(Ti₂Cl₉)][(Nb₆Cl₁₂O₄)₃-(Ti₃Cl₄)₂]¹⁷) have been already found on inner positions around the Nb₆ cluster. Such high inner oxygen content favours the VEC value of 14 calculated from the stoichiometry determined by the structural data. Indeed, we have found by theoretical calculations,9 and confirmed during our study of CsNb₆Cl₁₂O₂, that for one or two Oⁱ per formula unit, the antibonding Nb-Lⁱ contribution at the a_{2u} HOMO level is not sufficient to destabilize this level. Thus, the electronic properties of the corresponding oxyhalides remain similar to those of the halides, favouring VEC values of 16 or 15. In contrast, for three or more Oⁱ per unit, the M-Lⁱ antibonding contribution becomes preponderant like in the Nb6 oxides and the corresponding oxyhalides exhibit a VEC value of 14 like in the Nb₆ oxides. It is not possible to confirm accurately this VEC value of 14 in PbLu₃Nb₆Cl₁₅O₆ from a comparison of the Nb–Nb intracluster distances with the corresponding ones in other Nb₆ oxyhalides, because the matrix effect of oxygen due to various O/Cl ratios, the different VEC values and the different anionic charges of the units observed in all these compounds have differing effects on these Nb-Nb intracluster distances and prevent their comparison.

Another oxychloride, isostructural with $PbLu_3Nb_6Cl_{15}O_6$, has been obtained by the replacement of the lead atom with potassium.²⁷ In the latter compound, a potassium stoichio-

1240 J. Mater. Chem., 2001, 11, 1237–1241

metry close to 1 per Nb₆ results in a VEC of 13 per cluster, an unusual value for this class of compound. This result needs to be confirmed by additional physical studies, which are now in progress. Notice that a VEC of 13 was previously reported for KNb₈O₁₄,¹¹ and more recently in Ta₆ cluster oxides, M₂Ta₁₅O₃₂ (M=K, Rb).²⁸

In conclusion, the new PbLu₃Nb₆Cl₁₅O₆ oxychloride exhibits, for the first time, six inner oxygen ligands coordinated to the cluster and also additional chlorines not bonded to the cluster. It opens the way to the synthesis of other original Nb₆ cluster oxychlorides with large O/Cl ratios and new structure types. In such compounds, two different subnetworks, formed by both Nb₆L₁₈ (L=O, Cl) units and other chlorine-based entities, could be associated in the same material and may interact, leading to original physical properties. Moreover, the presence of two different ligands, namely oxygen and chlorine, bonded to the Nb₆ cluster in various conformations, could give access to selective substitutions by organic ligands in solution chemistry, which could control the catalytic activity of this family of Nb₆ oxychlorides.

Acknowledgements

This work was undertaken as part of the "Proyek PGSM Dikti Depdiknas Republik Indonesia", supported by a grant for F. G. It was supported in part by the Fondation Langlois that is warmly acknowledged.

References

- R. Chevrel and M. Sergent, in *Topics in Current Physics:* Superconductivity in *Ternary Compounds*, eds. Ø. Fisher and M. P. Maple, Springer-Verlag, Berlin, Heidelberg and New York, 1982.
- 2 C. Perrin, S. Cordier, F. Gulo and A. Perrin, *Ferroelectrics*, 2001, in press.
- Metal Clusters in Chemistry, vol. II, eds. P. Braunstein, L. A. Oro and P. R. Raithby, Wiley-VCH, 1999.
 J. M. Tarascon, F. J. Di Salvo, D. W. Murphy, G. W. Hull,
- 4 J. M. Tarascon, F. J. Di Salvo, D. W. Murphy, G. W. Hull, E. A. Rietman and S. V. Waszczak, *J. Solid State Chem.*, 1984, 54, 104.
- 5 O. M. Yaghi, M. J. Scott and R. H. Holm, *Inorg. Chem.*, 1992, **31**, 4778.
- 6 A. Simon, in *Clusters and Colloids From Theory to Applications*, ed. G. Schmidt, Verlag Chemie, Weinheim, 1994, p. 373.
- 7 C. Perrin, S. Cordier, S. Ihmaïne and M. Sergent, J. Alloys Compd., 1995, 229, 123.
- 8 G. Svensson, J. Köhler and A. Simon, in *Metal Clusters in Chemistry*, eds. P. Braunstein, L. A. Oro and P. R. Raithby, Wiley-VCH, 1999, p. 1509.
- 9 F. Ogliaro, S. Cordier, J.-F. Halet, C. Perrin, J.-Y. Saillard and
- M. Sergent, *Inorg. Chem.*, 1998, **37**, 6199. 10 G. V. Vajenine and A. Simon, *Inorg. Chem.*, 1999, **38**, 34
- G. V. Vajenine and A. Simon, *Inorg. Chem.*, 1999, 38, 3463.
 J. Köhler, R. Tischtau and A. Simon, *J. Chem. Soc.*, *Data*
- 11 J. Köhler, R. Tischtau and A. Simon, J. Chem. Soc., Dalton Trans., 1991, 829.
- 12 J. Xu, T. Emge and M. Greenblatt, J. Solid State Chem., 1996, **123**, 21.
- 13 S. Cordier, C. Perrin and M. Sergent, *Mater. Res. Bull.*, 1996, **31**, 683.
- 14 S. Cordier, C. Perrin and M. Sergent, *Mater. Res. Bull.*, 1997, 32, 25.
- 15 S. Cordier, C. Perrin and M. Sergent, Eur. J. Solid State Inorg. Chem., 1994, 31, 1049.
- 16 E. V. Anokhina, M. W. Essig and A. Lachgar, Angew. Chem., Int. Ed., 1998, 37, 522.
- 17 E. V. Anokhina, C. S. Day, M. W. Essig and A. Lachgar, *Angew. Chem., Int. Ed.*, 2000, **39**, 1047.
- 18 E. V. Anokhina, C. S. Day and A. Lachgar, *Chem. Commun.*, 2000, 1491.
- 19 F. Gulo and C. Perrin, J. Mater. Chem., 2000, 10, 1721.
- 20 COLLECT: KappaCCD software, Nonius BV, Delft, The Netherlands, 1998.
- 21 Z. Otwinowski and W. Minor, in *Methods in Enzymology*, eds. C. W. Carter, Jr. and R. M. Sweet, Vol. 276, Academic Press, New York, 1997.

- G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Solution, University of Göttingen, Göttingen, 1990.
 G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement, University of Göttingen, Göttingen, 1997.
 S. Cordier, F. Gulo and C. Perrin, *Solid State Sci.*, 1999, 1, 637.

- S. Cordier and A. Simon, *Solid State Sci.*, 1999, **1**, 199.
 Ru-Yi Qi and J. D. Corbett, *Inorg. Chem.*, 1997, **36**, 6039.
 F. Gulo and C. Perrin, to be published.
 A. Ritter, T. Lydssan and B. Harbrecht, *Z. Anorg. Allg. Chem.*, 1998, **624**, 1791.